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Abstract—The article is aimed at developing new algorithms for element-by-element calculation
of matrices of direct and inverse gramians for stable continuous linear MIMO LTT systems
based on spectral decompositions of gramians in the form of Hadamard products. It is shown
that the multiplier matrices in the Hadamard product are invariant under various canonical
transformations of linear continuous systems. Spectral decompositions of inverse matrices of
gramians of continuous dynamic systems from the spectra of gramian matrices and the original
dynamics matrices are also obtained. The properties of the multiplier matrices in spectral
decompositions of gramians are studied. Using these results, spectral decompositions of the
following energy metrics were obtained: of the volumes of attraction ellipsoids, of the matrix
traces of direct and inverse controllability gramians, of the input and output system energies,
of the centrality indices of energy controllability metrics and of the average minimum energy.
The practical applicability of the results is considered.
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1. INTRODUCTION

Gramian matrices are solutions of Lyapunov and Sylvester equations of a special type, which are
currently quite well studied [1-7]. Although control theory offers mathematical tools for controlling
technical and natural systems, the scientific foundations for controlling complex cyber-physical
systems are still insufficiently developed. In [8], analytical tools were proposed for studying the
controllability of an arbitrary complex directed network based on the optimal choice of control
nodes of the network, which can effectively control the entire dynamics of the system. Application
of these tools to real networks revealed that the number of control nodes is determined mainly by the
distribution of network nodes. Control theory is a mathematically advanced branch of technology,
which has numerous applications to electrical systems, industrial processes, communication systems,
aircraft, and spacecraft. However, fundamental questions concerning the controllability of complex
systems arising in nature and technology have not yet been fully resolved. Using a controllability
metric defined as the proportion of effectively controlling network nodes in their minimum set
required for complete controllability, it is shown in [9] that sparse heterogeneous networks have
poor controllability, while dense homogeneous networks have better controllability in comparison.
Transformation of the equations of state into canonical forms of controllability and observability
allows one to simplify the solution of the Lyapunov equations and to study the structural properties
of controllability and observability [9-12]. An important problem of optimal placement of sensors
and actuators based on various energy functionals, including invariant ellipsoids, was considered
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in [13-16]. In [10], a general approach to solving the problem of optimal placement of sensors and
actuators for multivariate control systems was formulated, which is based on the decomposition
of the system into stable and unstable subsystems. The degree of controllability of the system is
determined on the basis of energy metrics based on the use of finite and infinite controllability
gramians. A general method for calculating the inverse controllability gramian for the equations
of state specified in canonical controllability forms is proposed. In [13], a method for optimal
placement of virtual inertia on the graph of an energy system is proposed, it is based on the use of
energy metrics of the coherence of generators and the square of the Ho-norm of the system operator,
specified by the standard dynamic model in the state space. The problem is formalized as a non-
convex optimization problem with constraints in the form of values of observability gramians. It is
well known that minimum energy control problems are also solved using gramians. In recent years,
these approaches have been developed for complex energy, social, transport and biological networks
in [17-21]. In [19], it was shown that in many cases, the closer the eigenvalues of the dynamics
matrix are to the imaginary axis, the less energy is required to ensure full controllability of the
network. Thus, the degree of controllability (reachability) of the network is associated with the
minimum energy, which allows one to introduce new metrics in the form of the minimum eigenvalue
of the controllability gramian and the maximum number of its inverse gramian, as well as traces
of these gramians. In the power industry, DC inserts are used to damp dangerous low-frequency
oscillations. Using the gramian method for optimal placement of DC inserts in a full-scale model of
the European power system, it was possible to successfully solve the problem of global optimization
of the placement of DC inserts on the graph of the system model.

2. PRELIMINARY DISCUSSION AND PROBLEM STATEMENT

A directed graph G, formed by a set of nodes E and a set of edges () is considered. A linear
dynamic graph model with a standard description in the form of (A, B, C') representation in the
state space can be used to describe the graph model. As such a model, a stable linear stationary
continuous dynamical system with many inputs and many outputs is considered

#(t) = Ax(t) + Bu(t), y(t)=Cx(t), z(0)=0, (2.1)

where z(t) € R", u(t) € R™, y(t) € R™.

Large dynamic networks can be described by equations (1), where A is the Laplacian matrix,
B is the matrix of control inputs, and C' is the matrix of measured outputs and the order of the
graph dynamics matrix is a sufficiently large positive number [19]. The Lyapunov equation for
computing the controllability gramian of system (2.1) has the following form

AP¢ + PeAT = —BBT. (2.2)

Each actuator in a real system is limited in its control energy, so an important class of controlla-
bility metrics deals with the amount of input energy required to reach a final state from the initial
state. The following optimal control problem with minimum energy that will transfer the system
from the initial state to the final state x; at time ¢ [10] can be formulated

T
mﬁzg‘g&ze/\\u(ﬂ\ﬁdﬁ (2.3)
0
& (t) = Az (t) + Bu(t),
z(0) =0, z(t)=xy.
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SPECTRAL DECOMPOSITIONS OF INVERSE GRAMIAN MATRICES 997

Standard methods of optimal control theory can be used to obtain the solution. If the system
is controllable, then the optimal input u(7)" has the form
T -1
u(r)* = BTeA (7-1) (/ eAUBBTeATdU) zp, 0< 7L,
0

The optimum minimum of the input energy is
-1

/Hu | dT—:C (/ A" BBT A" da) Ty (2.4)

The average minimum energy is defined by the expression [19]
fuzu:l &

1 _
Eovmin = —tr Pc t=
n

The matrix
T

P, (t) = / e BBTeA do (2.5)
0

is called the finite controllability gramian at time ¢. The controllability gramian P.(¢) in most
cases is a positive semidefinite matrix. It defines an ellipsoid in the state space

Emin = {x cR"” ‘xTPC (t)_lx <1 } ,

which contains a set of states that can be reached in the moment ¢. The eigenvectors and corre-
sponding eigenvalues of the matrix P, (t)_1 determine the lengths of the corresponding semi-axes
of the ellipsoid [6].

Definition 1. Xiao matrix is a pseudo-hankel square matrix that has a zero-plaid structure of
the form [9]

y1 0 —y2 0 Y3
0 'y O —y3 0
Y=|-y 0 wy 0 ...|, wy€C i=1n.
0 —Y3 0 0
Y3 0 0 UYn

The elements of the matrix are designated using formulas
0, if j+n=2k+1, k=1,2...,n
Yim = {(—1)]%”%, if =2k k=1,2....n
An important special case of continuous linear stationary SISO (single-input, single-output) LTI

systems represented by state equations in canonical controllability and observability forms is con-
sidered. In this case, the controllability and observability gramians are defined by the formulas [20]

n n—1ln—1

=222 —k)ljJrln—Hv (2.6)

k=1 n=0 j=0

n n—1ln—1 n

=>.>. > %%#th (2.7)

k=1n=0 j=0

where N (s) is the characteristic polynomial of the system.
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998 YADYKIN

The representation of gramians in Hadamard form according to the formulas (2.6)—(2.7)

n—1n—1

P =QupoW,, V.= Z Z Livint1,
n=0 j=0
n—1ln—1

PF =QupoV,, WU,= Z Z IVIRPIRY
n=0 j=0

Hence follow the identities
n n—1n—1 )77
PP =Qrp=3 % Z Litin+1, (2.8)
k=1n=0 j= 0 k)

P = Qup = Qep.
The matrices Qcp, Q,r are Xiao matrices [20]. An alternative form of presentation is valid

QCF =w (n7 Sk7j7 77) 1j+177+17

n—1n—1

w(nvskvjn ZZ

) 3777:07”_1
n=0j=0 &V Sk)

Note that j+1,n+1 are the row and column numbers of the Xiao matrix. The function w(n, s, 7,n)
is a scalar multiplier and an invariant under various similarity transformations [7]. A dynamic
network described by the equations of state of a graph of the form (2.1) is considered. The matrix V'
is defined as

V= {el P T },

where e; is a unit vector in R", i is the number of the graph node. Following [21] the centrality
index of the energy metric of controllability of a graph node is defined as

JCEZ - tr (PCZ) 9

where P.; is the infinite gramian of controllability of a graph node, defined as solutions of the
following modal Lyapunov equations

AP, + PCZ'AT = —eie?.

Due to the linearity of the Lyapunov equations, the following statements are true

Jep =Y Jop,.
i=1

This equation defines the centrality index of the energy metrics of the graph. Generalizing these
results for the case of continuous MIMO LTI systems, one can introduce a similar centrality index
of the energy metrics of controllability of individual modes of these systems for the case of stable
fully controllable and observable systems with a simple spectrum of the dynamics matrix

l]C'Ei =tr (Pcz) ,

where 4 is number of an individual eigenvalue of the dynamics matrix. The rationale for this
approach is that any linear continuous MIMO LTT system can be represented as a graph whose
nodes correspond to individual eigenvalues. As shown in [10], the following formula is valid
oo
P =e¢; /eA"BBTeA*"dU ei =¢;Q (0, 00) ;f,
0

where @ (0,00) is the infinite grammian of controllability.
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In [10] it is shown that the matrix @ (0,00) is a Xiao matrix, which is invariant under any non-
degenerate coordinate transformations and a positive-definite matrix. Note that controllability
gramians play a central role in the formation of invariant ellipsoids of attraction. Further the
research objectives for solving some problems of state estimation and control will be considered.
The first objective of the article will be to obtain spectral decompositions of the inverse matrices of
gramians of continuous dynamic systems from the spectra of the inverse matrices and the original
dynamics matrices. Another objective of this article is to obtain spectral decompositions of the
following energy metrics [6, 8-19]:

1) of the volume of the attraction ellipsoids Vole,, Vole,. This metric characterizes the volume
of a subset of the state space reachable from the origin for a fixed amount of control energy, which
is a function of the controllability gramian determinant.

2) of traces of the controllability gramian matrix ¢rP.. This metric characterizes the measure
of energy, which is inversely proportional to the average energy required to control the system in
different directions of the state space.

3) of traces of the inverse matrix of the controllability gramian tr P.~!. This metric characterizes
the energy measure, which is proportional to the average energy required to control the system in
different directions of the state space.

4) of the input and output energies of the system FEj,, Eoy.

5) of the centrality indices of energy metrics of controllability of the system of individual modes
of continuous multi-connected stationary systems Jog, Jog;.

6) of the average minimum energy Fqymin -

3. SEPARABLE SPECTRAL DECOMPOSITIONS OF INVERSE GRAMIANS
OF CONTINUOUS MIMO LTI SYSTEMS IN THE FORM
OF GENERALIZED XIAO MATRICES

The following two methods for determining spectral decompositions of the inverse matrix of
controllability gramians will be proposed below.

First method. Separable spectral decompositions of inverse gramians of continuous MIMO LTI
systems (2.1) are based on the decomposition of the resolvent of the controllability gramian matrix
in the Faddeev—Leverrier series and the calculation of the zero term of this decomposition. The
resolvent decomposition has the form [22, 23]

n—1 j
Zj:o Rji18

(Is—P.) ' = Ns)

(3.1)

Assume N (s5) = 8" +p, 18"t +...p1s+po, 7 = 1,2,...n. Denote i, the roots of the characteristic
equation. The Faddeev matrices R; and the coefficients of the characteristic equation of the gramian
are determined using the following algorithm

n
The 1st step: p, =1, R, =1, R; = ijPg*i, 1=1,2,...,n.
j=i

1
The kth step: p,_i = —Etr (P.Ry—g+1), Rk =pn-il +P.Ry_p+1, k=1,2,...,n.

1

The nth step: pg = ——tr (P.R1), Ry =pol + P.R; = 0.
n

Assume s = 0 [24]

Pl = —pg'Ry =py' —pil —poP.—...— P71, (3.2)
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1000 YADYKIN

Thus, using the spectral decomposition of the resolvent of the controllability gramian matrix, a
formula for calculating the inverse gramian matrix is obtained. Note that not only the inverse
gramian matrix is calculated, but also all the coefficients of the characteristic polynomial of the
gramian, which allows to calculate all the eigenvalues of the gramian matrix. In addition, for a
simple spectrum of the gramian matrix, a formula representing the spectral decomposition of the
inverse gramian over the spectrum of the gramian matrix is obtained

n n—1 A
S 2= =g Pejoy 1
ft = B T

NC(O')\) X

where P, is the controllability gramian, P, ; is Faddeev matrix in the gramian resolvent decompo-
sition, o) are eigenvalues of gramian matrix P..

Second method. From (3.2) it is clear that the inverse matrix is formed by the sum of non-
negative powers of the gramian. This observation implies the following result.

Lemma 1. For MIMO LTI system (2.1) with a simple spectrum, the real matrices A, BB, for A

with a simple spectrum, and distinct eigenvalues sy, s,, the controllability gramian has the structure
of the Xiao matriz [24]:

for even n
pu 0 —p22 0
0 p2 .. 0 ..
Pc = —p2 ... —Pn—1n-1 |,
e 0 e Pn—1n—1 0
0 coo TPn—1In—1 0 Pnn
for odd n i i
P11 0 —p22 oo Prtlnsl
0 P22 —Pnt1ni1 :
2 2
P.= —P22 e —Pn—1n-1
—Dntlntl Pn—1n—1 0
2 2
p"_H"TH cee —Pn—1n—1 0 Pnn

2
And the inverse matrix of the controllability gramian has the form of

for even n
P 0 pis - 0
0 D2 ... 0 .
Pl=1|ps ... ... s Preon |
0 e Pn—ln—1 0
0 e ﬁnn72 0 ﬁnn
for odd n in the form of
pin 0 P13 e Plin
0 pa N
Pcil = | p31 .. ... ... Prn—2n
Pn-12 -+ DPn-1n-1 O
ﬁnl s ﬁnn—2 0 ﬁnn

Such a structure defined as a structure of the generalized Xiao matrix. This matrix inherits from
the Xiao matriz the presence of zero in those elements where the sum of the row and column is odd.

Proof. According to (3.1) the structure of the matrix (P.)” " coincides with the structure of
the Faddeev matrix R;. The latter matrix is a linear combination of non-negative powers of the

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 10 2024



SPECTRAL DECOMPOSITIONS OF INVERSE GRAMIAN MATRICES 1001

matrix P., which is a sum of zero plaid multipliers [11]. Any positive power “k” of the matrix P,
does not change the structure of the multiplier. Adding a diagonal matrix p, oI to such a
structure does not change the structure of the multiplier matrix. The lemma says nothing about
calculating the elements of the matrix (Pc)fl. This problem can be solved by reducing the problem
of calculating the inverse matrix to a set of solutions of n linear systems of algebraic equations with
the same left-hand matrix.

Theorem 1. If the conditions of the lemma be satisfied, then the elements of the inverse gramian
matriz can be evaluated by solving a system of linear algebraic equations of the SLAFE type

P.X =1, (3.3)

where the matriz P. is a generalized Xiao matriz. System (3.3) reduces to the solution of n systems
of linear algebraic SLAFE equations of the form

chz‘ = €4, (3.4)

153
1

where x; is column of matriz X, and e; is a unit vector.

Thus, the described method can be called hybrid, since it combines the decomposition of the re-
solvent of the controllability gramian matrix in the Faddeev—Leverrier series and the SLAE method.
For low-dimensional systems, it allows one to obtain the following calculation formulas for calcu-

lating the elements of the inverse gramian matrix in Xiao form.

lllustrative Example

The solutions of the SLAE (3.3) for low-dimensional systems are

n =1.
T = (1011)71-
n=2
z11 = (p1) 'y Ta2 = (pa2)
n=3
2\ 1 2\ 1
T11 = P33 <P11p33 - P22) , 31 = P22 (P11p33 - P22) )
Top = (1022)_1-
-1 -1
€13 = P22 (P11p33 - P%z) , I33 = P11 (P11P33 - P§2> >
n—=4

-1 -1
T11 = P33 (10111033 - p%Q) , X31 = P22 <P11p33 - P:Q«;g)

—1
T4 = X429 = P33 (p22p44 - p%2) :

4. THE PROPERTIES OF THE XIAO MATRICES

Lemma 2 [25]. For completely controllable and observable MIMO LTI system (2.1) with a simple
spectrum, the real matrices A, BB, for A with a simple spectrum, and distinct eigenvalues sy, Sp,
the following statements are true:

1. The matriz of the multiplier in the Hadamard decomposition of the controllability gramian P,
of the system is a solution of the Lyapunov equation

AP.+ P.AT = —T.
This matriz is the Xiao matriz.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 10 2024
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2. The multiplier matriz in the Hadamard decomposition of the controllability sub-gramian P.;
s a solution of the modal Lyapunov equation

AP, + Py AT = —I;;.
3. The diagonal elements of the multiplier matrices are positive numbers

Peii = Z n ! n
k=1 [T (sp—sx) I (=sk—s»5)

A=1 £k A=1 =k

(- >0, i=Tn

4. The diagonal elements of the controllability sub-gramian matrices in the form of Xiao matrices
form complex or real geometric progressions

Pci1i = Pcl11i—19is

where first element is pei11 = —= L , denominator is q; = —312, i=1,n.
(sk—=sx) [ (—sk—s»)
A=1, £k A=1,\=k

5. The trace of the Xiao matriz is a positive number that represents the sum of the progressions
formed by the diagonal terms of the controllability sub-gramians matrices
1 (s2)7' -1

tr P. = Z - -
=1 I (sg—sx) Il (—sk—s») (=si—1)

A=1, #k A=1, =k

> 0. (4.1)

Proof. The validity of statement 1 follows from the Hadamard decomposition of the controlla-
bility gramian P, of the form (2.8). It is proved in [24, 25] that this solution is singular and is the
Xiao matrix. From [24] (Theorem 2, corollary 3) it follows that the matrix of the multiplier €2 in
the Hadamard decomposition of the controllability gramian P, has the form

n n
P (t) = Q (t) o \Ija Q = W(’I’Z, Sk‘a _Sk’iaj)lnxn’ 1n><n — Z Z eje;l;)
j=1n=1

which proves the first part of statement 1 of the lemma. On the other hand, the Xiao matrix is
symmetric and real, which implies its normality. For such matrices there is a Schur transform that
reduces them to triangular form. It is important that in this case, the eigenvalues of the matrices
are located on the diagonal [11]. The validity of statement 2 follows from the fact that, when the
conditions of the lemma are met, the equality is true

The diagonal elements of the controllability sub-gramians matrices are determined by the formu-
las (2.8), from which the validity of statements 1-3 follows. The positivity of their sum follows from
the condition of complete controllability and observability of the MIMO LTI system (statement 4).
From this condition it follows that the trace of the Xiao matrix is a positive number and is the sum
of progressions formed by the diagonal terms of the controllability sub-gramians matrices. From
this follows the validity of the formula of the statement 5

(82)n71 1

7

ol = ; N (i) N (=s;) (=7 —1)

> 0.
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SPECTRAL DECOMPOSITIONS OF INVERSE GRAMIAN MATRICES 1003

Note that the representations of spectral decompositions of gramians in Hadamard form are closely
related to geometric control theory [7]. Multiplier matrices arise naturally when considering
Hadamard products, and the simplest representations of these matrices, as shown above, appear
when using canonical representations in the form of controllability and observability. First of all,
when describing matrices, it is necessary to distinguish significant and zero elements. Both have the
property of periodicity of the structure, which allows to classify these matrices as pseudo-Hankel
matrices. Significant elements always appear in the place of the main and secondary diagonals
in the case when the sum of the indices of their row and column is an even number. In turn,
zero elements always appear in the main and secondary diagonals in the case when the sum of the
indices of their row and column is an odd number. Matrices of multipliers consisting of significant
and zero elements are symmetric matrices. Any square matrix, including the matrix of the solution
of the Lyapunov equation, can be represented in the separable form

n n
P=3 > pily,
i=1j=1

where the matrix 1;; is the multiplier matrix, consisting of zeros, except for the element “ij”,
which is equal to one. The Hadamard transform is a structural transformation, which allows
one to separate the scalar and matrix parts of the spectral decompositions of the gramians, in
which the scalar part determines the matrix of multipliers, and the matrix part is associated
with the matrices of the decomposition of the resolvent of the dynamics matrix in the Faddeev—
Leverrier series and the transformed matrices of the right-hand sides of the Lyapunov equations. An
important property of the multipliers of SISO LTI systems in the canonical forms of controllability
and observability is their positive definiteness, a consequence of which is the positivity of the
diagonal elements and the trace of the corresponding gramians. Their elements depend only on
the eigenvalues of the dynamics matrix and its characteristic polynomial, which are independent
of similarity transformations and, therefore, are invariants under these transformations. Unlike
the multiplier matrices of SISO LTI systems, the matrix part of the spectral decompositions of
MIMO LTI depends on similarity transformations, but in this case the use of invariant multiplier
matrices allows to obtain closed formulas for evaluating any elements of the gramian matrices.
From the general formulas for calculating gramians it follows that in this case the multiplier matrix
is common for the controllability and observability gramians [25]. Note that the multiplier matrices
for SISO LTI systems can be calculated using Routh tables using the coefficients of the characteristic
equation, which can be calculated without calculating the eigenvalues of the dynamics matrix. The
advantages of this approach are the possibility of obtaining closed formulas for calculating the
direct and inverse controllability gramians for SISO LTI systems and the absence of the need to
consider spectral decompositions in the case of multiple eigenvalues [11]. Diagonal canonical forms
differ from canonical forms of controllability and observability in that for the former, gramians and
sub-gramians are generally complex matrices, while for the latter, they are real.

5. SPECTRAL DECOMPOSITIONS OF SOLUTIONS OF LYAPUNOV
DIFFERENTIAL EQUATIONS ON A FINITE INTERVAL

Then assume that system (2.1) is, unless otherwise stated, completely controllable, and observ-
able. Consider the Lyapunov differential equation [25]

dP(t)

i = AP (t)+ P (t) A" + BBT, P(0) = 0pgn, t €[0,77], (5.1)

where BBT is a real matrix of size (n x n).
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A solution to this equation using operational calculus and the decomposition of the resolvent
of the dynamics matrix A in the Faddeev—Leverrier series will be contracted. The latter have the
form [21, 22]

n

(Is— A" =Y A7 N6, Aj= > a AT,
j=0 i=j+1

(Is— AT = 3 ATSIN (),
=0

where A;, A;r are Faddeev matrices constructed for resolvent matrices using the Faddeev—Leverrier
algorithm; N (s) is characteristic polynomial of matrices A, A™; a; are coefficients of this polynomial.

The first method of spectral decompositions of solutions of Sylvester’s differential equations is
based on the lemma

Lemma 3 [24]. For completely controllable and observable MIMO LTI system (2.1) with a simple
spectrum, the real matrices A, BB, for A with a simple spectrum, and distinct eigenvalues sy, Sp,

Sk+8p7é07 kzlv—nv P:an

and for the solution of the Lyapunov equations on a finite half-interval [0,t) € [0, T, the system
can be represented as

rqg="Tzx, &q=Aqxdi+ Bau, ya= CaZa,

Ay =TAT™', B;=TB, Cy;=CT"', Q.=TBB'T",

or

A:[ul Uy ... Up } = TAT !,

where T is composed of right eigenvectors u;, and T~ is composed of left eigenvectors v}, corre-
sponding to its own number s;.

Then the controllability grammian of the diagonalized linear part is a solution of the Lyapunov
equation, which is determined from the formula

n n
Pi= Z Zp?lk,peke;r’

k=1 p=1
Ag=diag{...sp...} = Q1AQ{ ",

where Q1 is matriz of size n X n.

In this case, the solution of the Lyapunov differential equation on a finite half-interval [0,t) €
[0,T] has the form

P§ () = [pip(0)]
chlk,p

rS = epQ1BBT(Q)eT
sp + Sp’ dk,p le (Ql ) po

Pe(t) = QP (1) (QF) .

ré, elsetp)t
C dk,p C C
Pak,p (1) = ————+Dakp> DPikp = —
Sk + Sp

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 10 2024



SPECTRAL DECOMPOSITIONS OF INVERSE GRAMIAN MATRICES 1005

The second method for solving Lyapunov differential equations is based on the use of the Laplace
transform to calculate the Lyapunov integral and the decomposition of the resolvent of the dynamics
matrix in a Faddeev—-Leverrier series.

Theorem 2. For system (5.1) and satisfied conditions of Lemma 3, the following statements are
true:

The case of a simple combination spectrum of a matriz A

1. Spectral decompositions of solutions of Lyapunov differential equations (5.1) in the form of
Hadamard products for the combination spectrum of the dynamics matrices are

Piy(t) = Qy(t) 0 Wy, Uy = A;BBT By, (5.2)
n Jem (sk+sp)t _
Y3 — 5 le ' 1] A;BBAT, (5.3)
o=t 1 (sk—sx) I1 (sp—sa)b 7%

BRI shi oot 1]
- Z Z n n s _|_ s e]en )
k=1p=1 [] (sg—sx) TII (sp—sr) kT2
=1\~ A=1, £k
n—1ln—1
Pt)=Qt)o¥, U=> > A;BB'B,,
j=0n=0

i
o
3

n o n -1 Sispn e(skJrsp)t -1 T
= eie,.
> g " sits, |
k=1p=1j=00=0 [ (sk—sx) II (sp—s») g
A=T, Ak A=1 22k

3

2. For the case of decomposition of solutions of Lyapunov differential equations for the simple
spectrum of the dynamics matriz, the same formulas are valid (5.2)—(5.3) with other multiplier

matrices
n J(_ n ~
Py(t) = 32— ) (% = 1) 4,BBTAT = ()0 Wy (5.4)
k=1 II (sk—sx) II (=s,—3s))
A=1, A%k A=1,A=p
O . Sj(_sk)n s
an(t) = Z n k n (6 - 1) eje;, \I/jn = AJ’BBTA;, (55)
k=1 JI (sk—sx) II (=sp—3s2)
A=1\#£k A=1A=p
n—1n—1
Pt)y=Q(t)o¥, ¥=> S A;BBTAT, (5.6)
=0 n=0

nnlnlj

n
Do ST A (T Gy (0 )ed 6
k=1j=0n=0 I A=1)\=p

A=1 £k

3. The Hermitian component of the spectral decompositions of solutions of the Lyapunov equa-
tions is

PH(t) == (P(t)+ P*(t), PH()= % (Pin(®) + Py(®) (5.8)

DO | —
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where the spectral decompositions of the matrices P, P*, Pm,P are determined by the formulas
(5.2)—(5.7).

The case of a multiple spectrum of the matriz A

4. Solution of Lyapunov differential equations (5.1) in the form of Hadamard products for a
multiple spectrum of the dynamics matrices have the form

Piy(t) = Q(t) oV, Y, = A;BB'B,, (5.9)
n—1ln—1
=>">" pejn(t) A;BBTA,
7=0n=0
n_ms —1)MeTP | gms— s"
-1) -1
Pejn(t) = ZZKM —p) | dsma—r n m ’
6=1p=1 Py [ (=s—s)™
A=1,A#£5 s—s—ss
1 ar—1 s’
Ksp; = ;
A e B T
A=1,A#£5 s—s5
an( ) = Pejn (t) €je na
n—1ln—1
Pt)=Q(t)o¥, U=> > A;BB'B,,
§=0 n=0
n—1n—1
Z Z Pejn (t) €€ 77 (5.10)
7=0n=0

5. The Hermitian component of the solutions of the Lyapunov equations has the form (5.8).

Proof. The solution to the differential equation (5.1) is an integral of the form [1, 3, 25]

T
P(t) = / ATBBTA T dr. (5.11)

o

We apply the Laplace transform to both parts of the Lyapunov equation, considering the initial
conditions to be zero and using the theorem on the Laplace transform of the product of real
functions of time, the image of which is a fractional-rational algebraic fraction [26]. In the case
under consideration, this fraction contains one zero pole, and all other poles are simple. Using
the decomposition of the resolvent in the Faddeev—Leverrier series and substituting the obtained
expressions into (5.11), the image of the decomposition of the solution of the Lyapunov differential
equations (5.1) in the combination spectrum of the dynamics matrices is obtained

1 n n n—1ln—1 1 SZ;Spn -
P(S)ZQZZZZS+S _ - A;BBTA]
k=1 p=1 j=0 n=0 k 14 H (Sk — 8>\) H (Sp — S)\)

A=1,\#k A=1, £k
n n n—1n—1 1 Skspn 1

IS

n n
i=1p=1j=07=0 kT [T (s—s0) I (sp—s)
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By performing the inverse transformation, the spectral decomposition of the solution of the Lya-
punov differential equations (5.1) over the combination spectrum of the dynamics matrices in the

time domain in the form of Hadamard products is obtained

"2 5.5, elsrtsp)t 1
Ppt) =3 —= ST l P AjBBT A, = Qi (1) 0 Wy,
k=1p=1 [ (sk—sx) Il (sp—sx) S
A=1 A2k A=1, Ak
n n glgm 6(8k+8,0)t -1 T
Q) = 30 Y ),
k=1 p=1 H (Sk — 8>\) H (Sp — S)\) k P
A=1,\£k A=1,\£k
U, =A;BBTA}
n—1ln—1
Pt)=Q@t)o¥, ¥=>Y Y ABBTA] (5.12)
j=0 1=0
n—1ln—1 Jen

(SkJFSp)t —1
€ ‘| ejeT

ﬁ (SP—S,\) [ Sk+8p n -

The equality (5.12) expresses the spectral decomposition of solutions of Lyapunov differential equa-
tions over the combination spectrum of the matrix. This proves the first statement of the theorem.

Via the identity

non 1 Sjs n n 5](_8k)77

I T Y e

k=1p=1"K T IT (s —sx) I (sp—s1) k=1
A=1 2k A=1 £k

Similar decompositions in terms of the simple spectrum of the matrix A is obtained

R (€~ )ABBTAT = )y (1) 0 Ty,
k=1 JI (sk—sx) II (=sp—s))
A=1 %k A=1A=p
n J n
Qj(t) = Z n il Sk’r)l, (e~ 1)63'@;’ Wy = AJ'BBTAE’
k=1 I1 (sk=sa) II (=sp—sa)
=12~k A=1A=p
n—1n—1
Pt)=Q@t)o¥, ¥=>Y > ABBTAL
=0 n=0
n n—1ln—1 7 n
Q) =3 _ il 3’3)1 (e — 1)ejer.
k=1j=0n=0 [] (s —sx) Il (=s,—5sx)

=17k A=1A=p

The resulting decompositions prove the second statement of the theorem. The third statement

follows from statements 1 and 2.
First, the calculation of the Lyapunov integral (5.7) has singularities in the case of multiple roots

of the characteristic equation of the dynamics matrix. Due to the properties of the decomposition
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of the resolvent in the Faddeev—Leverrier series

(Is—A)1=%" ]‘éf(f) (Is — A7)~

In accordance with the formula for the inverse Laplace transform for a fractional rational function

ol fgd U
-1 Z NJS — Z ZK(Spjtmé_p685ta
7=0 o=1p=1
n—lA j
i S
K 1 dp—l ‘];O J
opj — —
p (p - 1)' dsP 1 ﬁ (8 o 8}\)7)1)\
A=1,A#6

s=S5

The image of the Lyapunov integral using the obtained expressions and the theorem on the image
of the product of two fractional rational functions of time, when one of the multiplied images has
multiple poles [26], is

n—1n—1
‘C[ {Z Z pcgn 6] 77} (5.14)

7=0n=0

n—ln—1 n mg 1 5—P dms—p s"
ZZZZK5PJ (mg —p)! |dsms—r n
7j=0n=0 =1 p=1 s P) H (—S—SA)m)‘
A=T,A#5 smsss
x A;BBTA],
1 ar—1 Y
Kopj =
_ | —1 n
(p= 1)t | ds? [T (—s—s)™
A=TA#6 o—ss
The formulas follow from this
Qi (1) = pejn (1) €€,
n—1ln—1
Pt)=Q(t)o¥, ¥=>Y Y A;BB"B,
=0 n=0
n—1n—1
Z Z Pejn (1) ej€ n (5.15)
j=0n=0

The equality (5.14) expresses the spectral decomposition of the solutions of the Lyapunov equations
over the multiple spectrum of the matrix A. Consider an important special case of continuous
linear stationary SISO LTT systems represented by state equations in canonical controllability and
observability forms. In this case, the controllability and observability gramians in Hadamard form
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are determined by the formulas (2.6), (2.7)

PF (1) = PF (4) = = Si(—sk)n skt _ 1)p. T
C]n( ) ojn( ) - Z n n (6 )6]6777
k=1 H (Sk — S)\) H (—Sk — S)\)
A=1,\#£k A=1, =k
~ i sj(—sk)" &
an(t) = Z n . n ( okt 1)7 \IIJT] - ejenv
k=t I (sk—sx) Il (=sk—sx)
A=1 £k A=1 =k
n—1ln—1
Prt)=Qt)oT, U= " Y ejel,
=0 n=0
n n—1n—1 J n
~ s7.(—sk)
NOEDY n e (€ = 1)ejey.
k=1j=0n=0 JI (sg—sx) I (=sk—s2)
A=1,\#£k A=1, =k

The multiplier of the final sub-gramian of controllability is directly proportional to the residue of
the transfer function of the system, multiplied by the value of the transfer function of the anti-stable
system when substituting the value of the root into it sy [27].

Corollary 1. If the conditions of Theorem 2 be satisfied, then the limit at infinity of the spectral
decompositions of the solutions of the Lyapunov differential equations (2.3) in the form of Hadamard
products for the multiple spectrum of the dynamics matrices has the form

n—1ln—1

=>">" pejn(00) A;BBT AT,
7=0n=0

Qjy (00) = Pejin (00) ejeg’

n_ms 1 ms=p | Jms—p s"
pain(00) = 13- 5 Ry U LN 7
6=1p=1 —P): [T (=s—s)™
A=1 A5 s —ss
n—1ln—1
P(oc) =Q(c0)o¥, ¥=> > A;BB'B,,
=0 n=0
n—1n—1
:Z Z Pejn (00) € el
=0 n=0

Proof. The transition to the limit at infinity in the expression (5.14) is completed. In accordance
with the finite value theorem

n mg mes— —
1 §—P dm(S 14 377
Pejn (00 Z Z K5PJ —p)! | dsmo—r n m '
6=1p=1 P [I (=s—sy)™
A=1,\#£6 s=—ss
n—1n—1
Pjy(00) = > " pejy(00) A;BBTAT,
7=0n=0

Qjy (00) = Pejn (0) €€,
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Thus, expressions for the limit at infinity of spectral decompositions of solutions of Lyapunov
differential equations (3.3) in the form of Hadamard products are obtained

n—1ln—1
P () =Q(c0)ol¥, W=>">"A;BB'B,,
§=0n=0
n—1n—1
=D D Pejn(o0)ejey.
j=0n=0

Formulas for spectral decompositions of solutions of Lyapunov algebraic equations in the form of
Hadamard products for multiple eigenvalues are obtained.

Corollary 2. For system (5.1) the spectral decomposition of the finite gramian of observability
in the form of Hadamard products has the form of formulas (5.2)—(5.8), (5.9)—(5.10), in which
the matriz AjBBTAg replaced by matriz A;r T CA,,. The multipliers of finite controllability and
observability grammians coincide on a half-interval [0,t) € [0, T]. Statements 3 and 4 coincide.
The proof of Corollary 2 coincides with the proof of Corollary 1 in accordance with the substitution.

Corollary 3. For system (2.1), satisfied conditions of Lemma 2 and Corollary 2, defined con-
trollability P, and observability P, infinite gramians and simple spectra of singular values of the
matrices of gramians o; exist a transformation of the variables of the system (2.1) with matrices
Teo and Ty of the form

Led = Tc2x7 Tod = To2x7

in which the gramians acquire a diagonal appearance

TP, T' = Poy, Pog = diag{ Oel oy - Oem } (5.16)

TP, T;' = P, Pod:diag{ Tol Toz -+ Oom } (5.17)

where T.o is matriz composed of the right eigenvectors of the gramian P., and Tc_zl 18 matrix
composed of the left eigenvectors of the gramian P,., Ty is matrixz composed of the right eigenvectors
of the gramian P,, and TO_21 is matriz composed of the left eigenvectors of the gramian P,.

Then the following spectral decompositions are true

n n
tr Poqg = Zaciv tr Pyy = Zaoia
i=1 =1

tr P' = |pog per + P 0, 5.18
cd [ c0 Pc Z c(Ucz ) c0 Z Ucz) ( )
trP_l—[p_lplznjil + Py PQZ + P En: T
= o - o s
od o0 i=1 N, (Uci) 0 N, oz) o0 No Joz)

Proof. The statements will be proved for the case of controllability gramians.

The decomposition of the resolvent of the controllability gramian P.; in the Faddeev—Leverrier
series

n n—1
AP L p 1
(IJ — Py )—1 _ Z cdyn—1 O¢ +' + £ed,10ci + £ed,0 : (519)
=1 Nc(aci) g — 0j
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in which P4 are Faddeev matrices for the gramian decomposition, calculated using the Faddeev—
Leverrier algorithm in the form

1
Petj = Pedji1] + Pedj2Ped + -+ Pl

where p.q; are coefficients of the characteristic equation of the controllability gramian matrix P.q.
Due to the diagonality of the matrices F.q, the matrix F.4 can be written in the form

[ n—1
2 Pcd,n—j cdl 0 T 0
= n—
P = ]2 Pedn—j%%s , (5.20)
ne1
0 chdn JUcdn
L ]7 N
From (3.2)
Pl = —p;}ORl = Doao [—pcdlf — Ped2Ped — - - —chfl} ,
tr Py' = |pog per + Peo Pe2 " Pe ]
o =P CZ N, .ﬂ> ‘ C;Nw N Z (02

This proves the first statement of the investigation.. The positivity of the trace follows from the
positivity of the singular values o;. The initial controllability gramian is determined from the
formula

P. =T PyTe. (5.21)

The proof of the statement for the case of observability gramians repeats the proof for the case of
controllability gramians.

Continuous stationary SISO LTI systems represented by state equations in canonical control-
lability and observability forms is considered. The first step in transforming equations of the
form (2.1) into canonical controllability form consists of transforming a system of the form (2.1)

r = RFz,,
i (t) = ALz, (1) + 05 u(t), 2.(0)=0, y& (t) =clz. (t), k=0,1,2,...,
0 1 0 0
0o 0 1 0 -
AF=10 0 o0 0 cr=loo0 01|
0 0 0 1
—Qp —air —a2 —Qn—1

Lj+1n+1-
Sk)

Corollary 4. In some cases, it is necessary to transform the obtained equations of state into a
new form, which transforms the controllability gramians into a diagonal form

rqg=Tyx, Tq= Pegxq, Pcd:diag{acl 0c2 --- Ocn }
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The new variables are related to the variables of the original system by the equation
_ _ Fy—1
g — dec = Td(RC ) xT. (5.22)
It follows that the similarity transformation matrix T at the second stage is equal to
T =Ty(RO)™

It is obvious that the controllability gramians of the original and transformed systems and their
wverse gramians are related by the relations
Po=T '"Pu(T™Y) = R{ T, Pea(Ty.) (RF)
Pc_l = T_lpc:ll(T ) - RFTdclpcd ( ) (RF)

6. FORMULAS OF SPECTRAL DECOMPOSITIONS OF SOME ENERGY METRICS

Statement. Consider MIMO LTI systems (2.1) in the canonical controllability form. Assume
that these systems are stable, matrices A, B are real, have a simple spectrum, their eigenvalues
sk, 8p are different, do not belong to the imaginary axis of the eigenvalue plane, and the conditions
are satisfied

sp+s,#0, k=1,n; p=1,n1; 8,5, ¢c spec A.

Then the following decompositions of the energy metrics of the controllability grammians over the
spectrum of the dynamics matriz A are valid

[n—1n-1 n T 7-("/2
1. Voley = ¢, | Det z_: Z: ZW (nysg,4.n ) A;BBT(Ay)" |, e = n(2+1)
=0 7=0 k=1 2
[n—1n—1 n T 71—”/2
2. Voley =cn, | Det ) ) ZW(”aSk’jan JCA;BBY(Ay)"CL en = pa gy
| j=0 n=0 k=1 2

3. tr P, =w(n,s,0,0) tr {AOBBT(AO)T} +w(n,sk, 1,1) tr [AlBBT(Al)T} +
+w(n,sg,n—1,n—1)tr [An,lBBT(An,l)T} .
4. SISO LTI : tr PI' = w(n, s;,,0,0) + w (n, s, 1,1) + -+ w (n,s5,n — 1,n —1).

1
5 Bin = 5o Plea, (6.1)
n n—1
_ dn—100: =~ 4+ 4+ P.g10c + P.go 1
Pclzz cdn—1Y ¢4 N(U )C,l ci cd,0 ;’ PCdj:p0d7j+1l+pcd,j+2pcd+ +Pn j— 1.
i=1 c\Yci ct
1
6. FEout = §xTP0:c, (6.2)
n n—1n—1 n—1ln—1
MIMO LTI: Py = ZZZ Livigri|o| Y. Y A;BB'B,|,
k=1n=0 j= o NV Sk) =0 =0
n n—1n—1 )77
SISOLTL: Pf=> > > —1]-“,7“.
k=1 n=0 j= 0 N (- Sk)
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7. Index of centrality of energy metrics of controllability of continuous multi-connected stationary
systems Jog

Jog =trP. = ; N(Si)N(—si) EE

(6.3)

8. Average minimum energy [19]

4Dy Z

Eavmin pcO Pe1 Z pcO Pec2 Z )
c ci

Proof of Statement. Decompositions 1 and 2 follow from the known formulas for calculating the
volume of the attraction ellipsoid [6], into which the expressions for the spectral decompositions of
the controllability and observability gramians are substituted. In this form, the formulas allow to
estimate the influence of the eigenvalues of the dynamics matrix on the volume of the attraction
ellipsoid. Statement 3 follows from formulas (5.6) and (5.7). Decomposition 4 follows from formulas
(2.6) and (2.7). The validity of decomposition 5 on the degree of reachability of the network (6.1)
follows from [3], formulas (5.18) and (5.20) of Corollary 3. The validity of decomposition 6 follows
from [3], formulas (5.6) and (5.7) of Theorem 2. The centrality indices of the energy metrics of
controllability of individual modes of continuous multiconnected stationary systems Jog , as shown
above, can be determined through the trace of the Xiao matrix. The latter is the sum of geometric
progressions of individual modes in accordance with formula (4.1) of Lemma 2. Decomposition 8
follows from [19] and formula (5.18) of Corollary 3. Note that the Xiao matrices play a major role in
calculating most of the energy metrics considered above. Energy metrics play an important role in
the stability analysis of linear systems. (6.2), (6.3) show a negative synergy of interaction of weakly
stable modes: the closer individual modes are to each other, the greater the energy accumulated
in the group of modes, the closer the system is to the stability boundary. The classical criterion of
the degree of stability, based on the distance from the nearest root of the characteristic equation
to the imaginary axis, does not reveal such synergy.

Ucz )

7. CONCLUSION

The use of transformations of the equations of state into canonical forms of controllability and
observability allowed one to simplify the formulas for spectral decompositions of the matrices of
gramians. In the article, both the spectra of the system dynamics matrix and the spectra of the
singular values of the gramians are considered as spectra. In the article, new spectral and structural
decompositions of finite gramians in Hadamard form are obtained for solutions of algebraic and
differential Lyapunov equations of linear stationary multi-connected systems with many inputs and
many outputs, including the case of multiple roots of the characteristic equation of the system. In
this case, the scalar part of Hadamard products depends on time, and the matrix part depends
on the Faddeev matrices in the decomposition of the resolvent of the dynamics matrix and the
right-hand sides of the Lyapunov equations. It is shown that the scalar function of the multiplier
is an invariant under similarity transformations and strongly depends on the difference between
the eigenvalues of the dynamics matrix and their multiplicity. It forms the main energy metrics of
the basic energy balance of the system. The matrix part of Hadamard products forms the weight
coefficients in the spectral decomposition of the square of the Ho-norm of the transfer function of the
dynamics matrix. The obtained results are generalized for the class of dynamic networks. In this
case, finite gramians, which are the solution of the Lyapunov differential matrix equations, play
an important role. Formulas (2.1)—(2.8) provide the key to solving the optimization problem (2.3)
and add the ability to control the current stability reserves. The degree of network stability is
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determined using the energy metric of the square of the Ho-norm of the transfer function of the
dynamics matrix, which makes it possible not only to establish the fact of dissipativity of transient
processes, but also to study the degree of their attenuation for weakly stable oscillatory systems or
systems with multiple roots of the characteristic equation [26]. The degree of controllability of the
network is associated with the minimum energy, which allows to introduce new metrics of energy
efficiency of control in the form of a quadratic form formed by its inverse controllability gramian,
obtained using spectral decompositions. Much attention is paid to invariant energy metrics formed
using Xiao matrices. The work uses known energy metrics of dynamic networks and develops
methods and algorithms for their spectral decomposition as an additional tool for their analysis
and optimization. The results obtained can be used to design modal control systems and solve
problems of optimal placement of sensors and actuators in control systems.
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